monoexp_init()
: Returns initial values for the parameters in a selfStart
model.
SSmonoexp()
: Creates initial coefficient estimates for a selfStart
model
for the four-parameter monoexponential()
function. For the parameters A
, B
,
TD
, and tau
.
Arguments
- mCall
A matched call to the function
model
.- data
A data frame in which to interpret the variables in
mCall
.- LHS
The expression from the left-hand side of the model formula in the call to
nls
.- ...
Additional arguments.
- x
A numeric predictor variable at which to evaluate the response variable
y
.- A
A numeric parameter for the starting (baseline) value of the response variable
y
.- B
A numeric parameter for the ending (asymptote) value of the response variable
y
.- TD
A numeric parameter for the time delay before exponential inflection of the curve, in units of the predictor variable
x
.- tau
A numeric parameter for the time constant
tau (𝜏)
of the exponential curve, in units of the predictor variablex
.tau
is equal to the reciprocal ofk
(tau = 1/k
), wherek
is the rate constant of the same function.
Value
monoexp_init()
: Initial starting estimates for parameters in the model
called by SSmonoexp()
.
SSmonoexp()
: A numeric vector for the response variabel y
of the
same length as the predictor variable x
. Returned from the expression
ifelse(x <= TD, A, A + (B - A) * (1 - exp((TD - x) / tau)))
.
Examples
set.seed(13)
x <- seq(0, 60, by = 2)
A <- 10; B <- 100; TD <- 15; tau <- 8
y <- monoexponential(x, A, B, TD, tau) + rnorm(length(x), 0, 3)
data <- data.frame(x, y)
model <- nls(y ~ SSmonoexp(x, A, B, TD, tau), data = data)
model
#> Nonlinear regression model
#> model: y ~ SSmonoexp(x, A, B, TD, tau)
#> data: data
#> A B TD tau
#> 11.973 99.313 15.229 7.976
#> residual sum-of-squares: 232.9
#>
#> Number of iterations to convergence: 5
#> Achieved convergence tolerance: 5.452e-06
if (FALSE) { # \dontrun{
plot(x, y)
lines(x, y)
points(x, y)
lines(x, fitted(model), col = "red")
} # }